18 research outputs found

    Deorbit kit demonstration mission

    Get PDF
    In Low Earth Orbit, it is possible to use the ambient plasma and the geomagnetic field to exchange momentum with the Earth's magnetosphere without using propellant. A device that allows an efficient momentum exchange is the electrodynamic tether (EDT), a long conductor attached to the satellite. EDT technology has been demonstrated in several past missions, being the Plasma Motor Generator mission (NASA 1993) one of the most successful. Nevertheless, it is not until today that reality has imposed a strong need and a concrete use case for developing this technology. In March 2019, the European Commission project Electrodynamic Tether technology for PAssive Consumable-less deorbit Kit (E.T.PACK) started the design of a new generation EDT. After completing the design phase, the consortium manufactured and is currently testing a Deorbit Kit Demonstrator (DKD) breadboard based on EDT technology. The objective of E.T.PACK is to reach Technology Readiness Level equal to 4 by 2022. The DKD is a standalone 24-kg satellite with the objective to demonstrate the performances of the improved EDT solution and validate its ultra-compact deployment system. The DKD is composed of two modules that will separate in orbit extending a 500-m long tape-like tether. The deployed bare-Aluminium tether will capture electrons from the ambient plasma passively and the circuit will be closed with the ionospheric plasma by using an active electron emitter. E.T.PACK tether will take advantage of several novelties with respect to the mission flown in the past that will allow to optimize the system volume and mass. Once successful demonstrated in orbit, the team plans to develop a suite of EDT systems capable of deorbiting satellites between 200 and 1000 kg from an altitude up to 1200 km in a few months. The work presents the current design status of the de-orbit kit demonstrator breadboard, the simulations of the system deorbit performances and the development approach.This work was supported by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.828902 (3M€ E.T.PACK project) and No.101034874 (100K€ BMOM project). SG is supported by an Industrial Ph.D funded by Comunidad de Madrid (135K€ IND2019/TIC17198). The team has recently got 2.5M€ additional financial support from European Union (ETPACK-F project No. 101058166) for the manufacturing and qualification of the In Orbit Demonstration (IOD) by the end of 2025

    Acute renal failure due to visceral leishmaniasis by Leishmania infantum successfully treated with a single high dose of liposomal amphotericin B

    No full text
    We report a visceral leishmaniasis case in an immunocompetent immigrant with acute renal failure. Parasites were demonstrated in bone marrow, peripheral blood, and kidney samples. A collapsing focal segmental glomerulosclerosis was documented, which was successfully treated with a single infusion of 10 mg/kg liposomal amphotericin B. © 2008 International Society of Travel Medicine

    Deorbit kit demonstration mission

    No full text
    In Low Earth Orbit, it is possible to use the ambient plasma and the geomagnetic field to exchange momentum with the Earth's magnetosphere without using propellant. A device that allows an efficient momentum exchange is the electrodynamic tether (EDT), a long conductor attached to the satellite. EDT technology has been demonstrated in several past missions, being the Plasma Motor Generator mission (NASA 1993) one of the most successful. Nevertheless, it is not until today that reality has imposed a strong need and a concrete use case for developing this technology. In March 2019, the European Commission project Electrodynamic Tether technology for PAssive Consumable-less deorbit Kit (E.T.PACK) started the design of a new generation EDT. After completing the design phase, the consortium manufactured and is currently testing a Deorbit Kit Demonstrator (DKD) breadboard based on EDT technology. The objective of E.T.PACK is to reach Technology Readiness Level equal to 4 by 2022. The DKD is a standalone 24-kg satellite with the objective to demonstrate the performances of the improved EDT solution and validate its ultra-compact deployment system. The DKD is composed of two modules that will separate in orbit extending a 500-m long tape-like tether. The deployed bare-Aluminium tether will capture electrons from the ambient plasma passively and the circuit will be closed with the ionospheric plasma by using an active electron emitter. E.T.PACK tether will take advantage of several novelties with respect to the mission flown in the past that will allow to optimize the system volume and mass. Once successful demonstrated in orbit, the team plans to develop a suite of EDT systems capable of deorbiting satellites between 200 and 1000 kg from an altitude up to 1200 km in a few months. The work presents the current design status of the de-orbit kit demonstrator breadboard, the simulations of the system deorbit performances and the development approach

    Deorbit Kit Demonstration Mission

    Get PDF
    In Low Earth Orbit, it is possible to use the ambient plasma and the geomagnetic field to exchange momentum with the Earth's magnetosphere without using propellant. A device that allows an efficient momentum exchange is the electrodynamic tether (EDT), a long conductor attached to the satellite. EDT technology has been demonstrated in several past missions, being the Plasma Motor Generator mission (NASA 1993) one of the most successful. Nevertheless, it is not until today that reality has imposed a strong need and a concrete use case for developing this technology. In March 2019, the European Commission project Electrodynamic Tether technology for PAssive Consumable-less deorbit Kit (E.T.PACK) started the design of a new generation EDT. After completing the design phase, the consortium manufactured and is currently testing a Deorbit Kit Demonstrator (DKD) breadboard based on EDT technology. The objective of E.T.PACK is to reach Technology Readiness Level equal to 4 by 2022. The DKD is a standalone 24-kg satellite with the objective to demonstrate the performances of the improved EDT solution and validate its ultra-compact deployment system. The DKD is composed of two modules that will separate in orbit extending a 500-m long tape-like tether. The deployed bare-Aluminium tether will capture electrons from the ambient plasma passively and the circuit will be closed with the ionospheric plasma by using an active electron emitter. E.T.PACK tether will take advantage of several novelties with respect to the mission flown in the past that will allow to optimize the system volume and mass. Once successful demonstrated in orbit, the team plans to develop a suite of EDT systems capable of deorbiting satellites between 200 and 1000 kg from an altitude up to 1200 km in a few months. The work presents the current design status of the de-orbit kit demonstrator breadboard, the simulations of the system deorbit performances and the development approach.This work was supported by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.828902 (3M€ E.T.PACK project) and No.101034874 (100K€ BMOM project). SG is supported by an Industrial Ph.D funded by Comunidad de Madrid (135K€ IND2019/TIC17198). The team has recently got 2.5M€ additional financial support from European Union (ETPACK-F project No. 101058166) for the manufacturing and qualification of the In Orbit Demonstration (IOD) by the end of 2025

    Population ecology of Paepalanthus polyanthus: predispersal hazards and seed production

    No full text
    This study aimed at evaluating seed production and predispersal hazards in a sand dune population of P. polyanthus (Eriocaulaceae) in Southern Brazil. Bad development of flowering capitula was caused by the wind and by interference among umbels. A positive correlation between the proportion of atrophied capitula and the number of capitula/umbels also suggested resource limitation. A caterpillar of a Recurvaria Haworth (Lepidoptera: Gelechiidae) species that eats flowers and a boring caterpillar (Lepidoptera not identified) were the main herbivores. Plants reproducing during the flowering peak had a lower probability of being damaged by Recurvaria sp., suggesting an escape from herbivores by flowering synchronism. The proportion of capitula damaged by herbivores was low, causing a reduction of about 5% in the seed set/plant. The boring caterpillar may or may not cause umbel abortion. When the abortion occurs, seed production is reduced by 12%. Many capitula with no damage and individual flowers (up to 50%) did not produce seeds. Pollination failure could be related to this low rate of seed set. We discuss the fact that the low recruitment of seedlings reported for populations of P. polyanthus did not seem to be limited by seed rain, which was estimated at an average of 8000 seeds/plant even when herbivore damage occurred
    corecore